Alternative Methods for Fitting Two-Stage Hierarchical Bayesian Models
ثبت نشده
چکیده
Although it is common practice to fit a complex Bayesian model using Markov chain Monte Carlo (MCMC) methods, we provide an alternative sampling-based method to fit a two-stage hierarchical model in which there is conjugacy conditional on the parameters in the second stage. Using the sampling/importance resampling (SIR) algorithm, our method subsamples independent samples from an approximate joint posterior density. This is an alternative to a Metropolis-Hastings (MH) algorithm normally used to draw samples from the joint posterior density. We illustrate our method using a Poisson regression model which has much interest for the analysis of rare events from small areas. We use three examples and a simulation study to assess the performance of our method relative to the MH algorithm.
منابع مشابه
The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models
In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...
متن کاملBayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملHierarchical Model Selection Using a Benchmark Discrepancy
In the context of small area estimation, hierarchical Bayesian (HB) models are often proposed to produce more reliable estimators of small area quantities than direct estimates, such as design-based survey estimators. A method that benchmarks HB estimates with respect to higher level direct estimates and measures the relative inflation in the posterior mean square error of distributions due to ...
متن کاملFitting Bayesian hierarchical multinomial logit models in PROC MCMC
The paper illustrates how to use the MCMC procedure to fit a hierarchical, multinomial logit model for a nominal response variable with correlated responses in a Bayesian framework. In particular, the paper illustrates how to perform three important parts of Bayesian model fitting. First, to make sure appropriate prior distributions are selected, the paper shows how to simulate draws directly f...
متن کاملBayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کامل